doc. RNDr. Miroslav Kolařík, Ph.D. publikace

Journal papers

  1. O programovacím jazyku PROLOG.
    Matematika–Fyzika–Informatika 33, 1 (2024), 52–71.
  2. c-ideals in complemented posets.
    Mathematica Bohemica 149, 3 (2024), 305–316; co-authors: I. Chajda, H. Länger.
  3. O zbohatnutí na základě rychlejšího přístupu k informacím.
    Matematika–Fyzika–Informatika 32, 1 (2023), 66–71.
  4. Orthomodular and Skew Orthomodular Posets.
    Symmetry 2023, 15, 810, 13 pages; co-authors: I. Chajda, H. Länger.
  5. Varieties corresponding to classes of complemented posets.
    Miskolc Mathematical Notes 22, 2 (2021), 611–623; co-authors: I. Chajda, H. Länger.
  6. Extensions of posets with an antitone involution to residuated structures.
    Fuzzy Sets and Systems 425 (2021), 169–175; co-authors: I. Chajda, H. Länger.
  7. Sheffer operation in complemented posets.
    Mathematics for Applications 10 (2021), 1–7; co-author: I. Chajda.
  8. Evolution of objects and concepts.
    Soft Computing 23 (2019), 9449–9458; co-authors: I. Chajda, J. Paseka.
  9. Dva základní šifrovací principy.
    Matematika–Fyzika–Informatika 27, 1 (2018), 67–76.
  10. ToTem: a tool for variant calling pipeline optimization.
    BMC Bioinformatics 19, 1 (2018), 243–251; co-authors: N. Tom, O. Tom, J. Malcikova, S. Pavlova, B. Kubesova, T. Rausch, V. Benes, V. Bystry, S. Pospisilova.
  11. Reduced axioms for the propositional logics induced by basic algebras.
    Soft Computing 22, 4 (2018), 1203–1207; co-author: I. Chajda.
  12. A short note on LCBA—fuzzy logic with a non-associative conjunction.
    Discuss. Mathem., General Algebra and Apll. 36, (2016), 113–116.
  13. On some properties of directoids.
    Soft Computing 19, 4 (2015), 955–964; co-authors: I. Chajda, J. Gil-Férez, R. Giuntini, A. Ledda, F. Paoli.
  14. Variety of orthomodular posets.
    Miskolc Mathematical Notes 15, 2 (2014), 361–371; co-author: I. Chajda.
  15. Lexicographic Product vs Q-perfect and H-perfect Pseudo Effect Algebras.
    Soft Computing 18 (2014), 1041–1053; co-author: A. Dvurečenskij.
  16. Every skew effect algebra can be extended into a total algebra.
    Journal of Multiple-Valued Logic and Soft Computing 23, 1/2 (2014), 53–72; co-author: I. Chajda.
  17. Algebras assigned to ternary relations.
    Miskolc Mathematical Notes 14, 3 (2013), 827–844; co-authors: I. Chajda, H. Länger.
  18. Pseudo basic algebras.
    Journal of Multiple-Valued Logic and Soft Computing 21, 1/2 (2013), 113–129; co-authors: I. Chajda, J. Krňávek.
  19. Independence of the axiomatic system for MV-algebras.
    Math. Slovaca 63, 1 (2013), 1–4.
  20. Very true operators in effect algebras.
    Soft Computing 16, 7 (2012), 1213–1218; co-author: I. Chajda.
  21. Dynamic effect algebras.
    Math. Slovaca 62, 3 (2012), 379–388; co-author: I. Chajda.
  22. Tense operators on basic algebras.
    International Journal of Theoretical Physics 50, 12 (2011), 3737–3749; co-authors: M. Botur, I. Chajda, R. Halaš
  23. On double basic algebras and pseudo-effect algebras.
    Order 28, 3 (2011), 499–512; co-authors: I. Chajda, J. Kühr.
  24. Properties of relatively pseudocomplemented directoids.
    Math. Bohemica 136, 1 (2011), 9–23; co-authors: I. Chajda, F. Švrček.
  25. Polynomial permutations on bounded commutative directoids with an antitone involution.
    Soft Computing 15, 1 (2011), 183–186; co-authors: I. Chajda, H. Länger.
  26. Implication and equivalential reducts of basic algebras.
    Acta Univ. Palacki. Olom., Fac. rer. nat., Mathematica 49, 2 (2010), 21–36; co-authors: I. Chajda, F. Švrček.
  27. Interval basic algebras.
    Novi Sad Journal of Mathematics 39, 2 (2009), 71–78; co-author: I. Chajda.
  28. Basic pseudorings.
    Acta Univ. Palacki. Olom., Fac. rer. nat., Mathematica 48 (2009), 25–31; co-author: I. Chajda.
  29. Remarks on pseudo MV-algebras.
    Discuss. Mathem., General Algebra and Apll. 29 (2009), 5–19; co-author: I. Chajda.
  30. Independence of axiom system of basic algebras.
    Soft Computing 13, 1 (2009), 41–43; co-author: I. Chajda.
  31. Normalization of basic algebras.
    Discuss. Mathem., General Algebra and Apll. 28, 2 (2008), 237–249.
  32. Monadic basic algebras.
    Acta Univ. Palacki. Olom., Fac. rer. nat., Mathematica 47 (2008), 27–36; co-author: I. Chajda.
  33. A common approach to directoids with an antitone involution and D-quasirings.
    Discuss. Mathem., General Algebra and Apll. 28, 2 (2008), 139–145; co-author: I. Chajda.
  34. Commutative directoids with sectionally antitone bijections.
    Discuss. Mathem., General Algebra and Apll. 28, 1 (2008), 77–89; co-authors: I. Chajda, S. Radeleczki.
  35. Nearlattices.
    Discrete Mathematics 308, 21 (2008), 4906–4913; co-author: I. Chajda.
  36. Characterizations of posets via weak states.
    Demonstratio Mathem. 41, 3 (2008), 491–496; co-authors: I. Chajda, H. Länger.
  37. Ideals, congruences and annihilators on nearlattices.
    Acta Univ. Palacki. Olom., Fac. rer. nat., Mathematica 46 (2007), 25–33; co-author: I. Chajda.
  38. Directoids with an antitone involution.
    Comment. Math. Univ. Carolin. 48, 4 (2007), 555–569; co-author: I. Chajda.
  39. Directoids with sectionally antitone involutions and skew MV-algebras.
    Math. Bohemica 132, 4 (2007), 407–422; co-author: I. Chajda.
  40. MV-like algebras associated to lambda-ortholattices.
    Demonstratio Mathem. 40, 2 (2007), 261–270; co-authors: I. Chajda, P. Emanovský.
  41. Near lambda-lattices.
    Kyungpook Math. J. 47, 2 (2007), 283–294; co-author: I. Chajda.
  42. A decomposition of homomorphic images of nearlattices.
    Acta Univ. Palacki. Olom., Fac. rer. nat., Mathematica 45 (2006), 43–52; co-author: I. Chajda.

Papers in proceedings

  1. Direct decomposition of basic algebras and their idempotent modifications.
    Acta Univ. M. Belii 15 (2009), 11–19, ISBN: 978-80-8083-906-2; co-author: I. Chajda.
  2. Derived quasirings of directoids with an antitone involution.
    Studentská vědecká soutěž „O cenu děkana 2007“, Olomouc 2007, pp 23–28, ISBN 978-80-244-1759-2.

Other publications (in Czech)

  1. Matematika 1: lineární algebra.
    Olomouc 2021, textbook, 125 pages; co-author: I. Chajda.
  2. Matematická analýza 1: řešené příklady ke cvičením.
    Olomouc 2020, textbook, 95 pages; co-author: E. Foltasová.
  3. Algebra 1: řešené příklady ke cvičením.
    Olomouc 2017, textbook, 34 pages.
  4. Matematická logika: řešené příklady ke cvičením.
    Olomouc 2017, textbook, 16 pages.
  5. Úvod do informatiky: řešené příklady ke cvičením.
    Olomouc 2014, textbook, 41 pages.